Simulatori a combustibile solido, obbiettivi formativi e layout

Quando si decide la realizzazione di un simulatore a combustibile solido bisogna chiedersi innanzitutto quali obbiettivi formativi si vogliono conseguire. Dopo aver risposto a questa domanda si può scegliere la struttura più indicata. E’ evidente che nel momento che si vorrebbe un simulatore completo, in grado cioè di soddisfare esigenze diverse, bisogna giungere ad un compromesso.

Il seguente documento elenca le diverse tipologie di simulatore con gli obbiettivi formativi che possono essere raggiunti.

Flat Straight Cell.

Questo simulatore permette di erogare dei corsi formativi che consentono di sviluppare le abilità tecniche (skill) del personale operativo e in parte le competenze tattiche. All’interno di questa struttura si possono erogare essenzialmente due tipologie di esercizio:

  • Osservazione. Tipologia di addestramento che permette di avvicinare il personale alla conoscenza del fenomeno incendio al chiuso. Il personale all’interno mantiene una posizione statica e passiva rispetto a quanto avviene. La conduzione è di pertinenza esclusiva degli istruttori, 2 all’interno + uno  all’esterno. Il ratio all’interno del container tra istruttori e allievi è di 1:3 elevabile fino a 1:5. La buona riuscita dell’esercizio è completamente nelle mani dei conduttori. Questa tipologia di container non è provvista di camini. Il fumo viene quindi gestito tramite le porte posteriori del container;
  • Attacco. Tipologia di addestramento che prevede una partecipazione attiva da parte degli allievi. Il personale all’interno si muove al fine di poter dar modo a tutti di operare con la lancia per apprendere le corrette tecniche. Il ratio tra istruttori e allievi è di 1:2 (tre istruttori con sei allievi).

Criticità:

  • gli allievi sono passivi rispetto all’incendio;
  • quando gli allievi sono attivi effettuano il “flame cooling” e non il più appropriato “smoke cooling”;
  • se il conduttore non è sufficientemente preparato il carico termico subito dagli allievi è notevole;
  • praticamente nulla la possibilità di allenare le competenze tattiche.

Flat Straight cell. Credit Pierre-Louis Lamballais

 

Split Level Cell.

Questa tipologia di simulatore permette di replicare le possibilità del container flat straight cell elevando il livello di sicurezza grazie alla modalità costruttiva specifica. La specificità di questo simulatore risiede nel fatto che la camera di combustione è posizionata ad un livello superiore rispetto alla quota del container dove sono posizionati allievi e conduttori. Questo è probabilmente il layout più diffuso da quando si è sviluppata la formazione CFBT. Questa tipologia di container è stata adottata dal Corpo Nazionale Vigili del Fuoco. Le tipologie di corso erogabili sono:

  • Osservazione. Tipologia di addestramento che permette di avvicinare il personale alla conoscenza del fenomeno incendio al chiuso. Il personale all’interno mantiene una posizione statica e solo osservatore rispetto a quanto avviene. La conduzione è di pertinenza esclusiva degli istruttori (2 all’interno + uno all’esterno). Il ratio all’interno del container tra istruttori e allievi è di 1:3 elevabile fino a 1:4. A differenza del Flat gli allievi subiscono un carico termico inferiore. Il simulatore è dotato di un camino che permette di modificare le condizioni dello strato di gas (sia la concentrazione rispetto al campo di infiammabilità che la temperatura). Adottando una giusta sequenza di apertura e chiusura si possono settare questi parametri al fine di avere una buona riproducibilità del fenomeno;
  • Attacco. Tipologia di addestramento che prevede una partecipazione attiva da parte degli allievi. Il personale all’interno si muove al fine di poter dar modo a tutti di operare con la lancia per apprendere le corrette tecniche. La rotazione degli allievi è diversa rispetto al container Flat. Il fatto poi che talvolta la camera di camera di combustione sia coibentata permette di mantenere per un tempo maggiore le condizioni necessarie per permettere a tutti di esercitarsi nelle giuste condizioni ambientali;
  • Simulatore Smoke explosion e Fire Gas Ignition. Con delle piccole modifiche possono essere riprodotti anche questi fenomeni.

Criticità:

  • la conduzione da parte dell’istruttore è più complessa;
  • non consente di formare un grande numero di allievi per sessione;
  • se utilizzato per riprodurre l’FGI richiede allievi che abbiano un’ottima conoscenza dello sviluppo dell’incendio, altrimenti rischia di passare dei falsi messaggi;
  • praticamente nulla la possibilità di allenare le competenze tattiche.

 

Container split level posizionati alla SFO di Montelibretti. Credit Antincendio-Italia.it

 

Multifloor Cell.

Il Multifloor Cell è un simulatore che permette di addestrare tutte e due le abilità, tecniche e tattiche. In un’unica struttura si possono realizzare diverse unità didattiche :

  • Prova di affaticamento: si deve tenere presente che anche in intervento si giunge sul luogo dell’incendio dopo essersi notevolmente affaticati: si fanno rampe di scale, si fa stendimento manichette ecc.; in container come in intervento si deve apprendere a saper dosare le proprie forze al fine di non arrivare esausti sul target;
  • Essere orientati nello spazio: è importante, soprattutto in intervento, avere coscienza degli ambienti che si attraversano e degli oggetti che ci circondano (in particolare anche con lo scopo di individuare eventuali fonti di pericolo che si potrebbero lasciare alle spalle). In intervento si deve sempre sapere dove ci si trova e avere coscienza di cosa sta attorno;
  • Finalità pedagogica del percorso a ritroso in uscita: sempre in funzione del saper dosare le proprie forze si deve tenere presente che in caso di necessità o a fine intervento si deve sempre essere in grado di ritornare in zona sicura senza difficoltà; anche in relazione al consumo di aria si deve poter tornare in zona sicura senza aver intaccato la riserva di aria.

A titolo esemplificativo si possono elencare:

  • Multifloor level 1. In questa unità didattica l’allievo si approccia per la prima volta ad una simulazione più complessa ed articolata rispetto al semplice container. In questa prima fase l’esplorazione principale sarà nei propri stessi confronti. Durante la progressione l’allievo sperimenterà condizioni che andranno via e via modificandosi man mano che si addentra nella struttura. Inizialmente si ha una sezione all’interno della quale la temperatura è relativamente bassa mentre è abbastanza impegnativo l’aspetto emotivo (buio e con passaggi tecnici) e quello fisico prestazionale. Una volta superata questa prima fase l’impegno fisico va un po’ scemando mentre aumenta la temperatura. La terza e ultima fase prevede nessun impegno fisico, visibilità migliore ma temperatura decisamente maggiore. L’esercizio termina uscendo direttamente all’esterno da quest’ultima sezione;
  • Mutlifloor level 2. Stesso esercizio rispetto a prima con la differenza che gli allievi non escono all’esterno direttamente dal container caldo ma tornano indietro ripercorrendo i propri passi. La valenza formativa risiede nella gestione dell’aria (Air management). Gli allievi saranno impegnati a calcolare la quantità d’aria residua in maniera tale da poter uscire da dove sono entrati senza intaccare la riserva d’aria di emergenza. Gli altri tasks sono medesimi rispetto all’esercizio base;
  • Mutlifloor level 3. In questa unità didattica gli allievi compiono una simulazione di attacco all’incendio. Dopo che tutto il personale ha conseguito le competenze di base sui fenomeni legati all’incendio al chiuso si può passare alla formazione sulle altre abilità necessarie in un intervento. Le competenze che si devono possedere sono definite in due grandi famiglie:
    • Competenze tattiche;
    • Competenze tecniche.

Nella esercitazioni precedenti si sono sviluppate essenzialmente quelle tecniche e poco quelle tattiche. Ora si provvederà a ricomporre tutte le competenze effettuando delle simulazioni di attacco all’incendio. Le esercitazioni pratiche consistono in sessioni realistiche di formazione con fuoco reale ed esercitazioni pratiche di utilizzo delle attrezzature.

  • Mutlifloor level 4. Incendio scantinato. Questa unità didattica permette di sviluppare tutte le abilità di cui sopra in un ambiente che in intervento rappresenta uno degli scenari più impegnativi e pericolosi per le squadre in intervento. Tutto questo mantenendo sempre uno standard elevato di sicurezza.

Criticità:

  • la qualità della formazione alla lettura dei fenomeni dell’incendio è mediocre;
  • dopo la prima squadra in entrata vi è difficoltà a mantenere l’altezza del piano neutro e consistenza del fumo.

 

Multifloor level Scuola Provinciale Antincendi di Trento. Credit Ing Gabriele Pilzer

 

T-Cell.

Il layout di questo simulatore permette di completare la formazione del personale operativo. Le caratteristiche principali sono:

  • Corrispondenza alla realtà per quanto riguarda la realtà interventistica in situazioni di incendio regolato dal comburente;
  • Un ambiente che permette di avere scenari multipli con finalità operative diverse;
  • Riproducibilità della formazione.

Per creare le giuste condizioni, l’istruttore deve avere sempre sotto controllo la combustione (che sta fornendo l’energia e il fumo). La comprensione di quali saranno le conseguenze a breve termine di quello che sta avvenendo e la capacità di mantenere il controllo determinano il successo dell’evoluzione.

  • Long Attack. Questa evoluzione è un evoluzione del container base Flat straight introducendo le seguenti caratteristiche aggiuntive:
    • Mandata di attacco molto più lunga;
    • Scarsa visibilità;
    • Passaggio di due porte (una in condizioni di visibilità quasi nulle);
    • Punti di attrito multipli;
    • Focolaio protetto (non attaccabile direttamente per errore dagli allievi).
  • Fire Attack e Search & Rescue. Questa evoluzione segue il Long Attack introducendo le seguenti caratteristiche aggiuntive:
    • Ricerca primaria e salvataggio (Primary Search & Rescue) nelle tre stanze di cui è dotato il simulatore;
    • Tecniche di ricerca;
    • Due squadre che operano allo stesso tempo;
    • Rimozione delle vittime.

Criticità

  • molto impegnativo per allievi alle prime armi;
  • richiede un gran numero di istruttori per sessione;
  • gli istruttori debbono possedere un bagaglio tecnico e d’esperienza notevole.

 

Conclusioni

Da quanto scritto sopra si evidenzia che le tipologie sopra descritte hanno degli aspetti positivi e alcuni meno. Per poter raggiungere tutti gli obbiettivi formativi auspicabili bisognerebbe averne a disposizione la maggior parte di essi. Vi è però una tipologia di simulatore che non è stata descritta sopra che è in grado di cogliere gli aspetti positivi di ciascuno di essi racchiudendoli in un unica struttura. La descrizione di questo simulatore sarà l’oggetto del prossimo articolo. Stay tuned

Tattiche e tecnologie per l’attacco all’incendio: come rispondere al cambiamento dei moderni scenari. Atti del convegno

“La qualità delle nostre decisioni è la misura del nostro coraggio”

          Presentazione utilizzata durante il seminario

 

Il casco Dräger HPS 7000 dalla viva voce dei protagonisti

Quello che segue è uno stralcio dell’intervista rilasciata a Dräger.

Intervista a Luca Parisi, Vigile del fuoco del Comando Provinciale di Trento e istruttore della Scuola Provinciale Antincendi di Trento nell’ambito del CFBT (Compartment Fire Behavior Training)

Dräger: Corsico. „Dimmi e dimenticherò, mostrami e forse ricorderò, coinvolgimi e comprenderò”. Questa frase di Confucio ben si addice al suo ruolo di istruttore di Vigili del Fuoco, e molto si può capire dalla foto del casco Dräger HPS 7000 utilizzato in condizioni estreme: oltre 150 volte nella “casa a fuoco” per 25 minuti ogni volta, con una temperatura superiore ai 500°C! Ci parli della sua esperienza come istruttore dei Vigili del fuoco e quali sono i temi che affronta con gli allievi prima di una prova pratica.
LP : “Il nostro obiettivo è quello di far vivere ai nostri allievi un’esperienza più vicino possibile ad un incendio reale, mantenendo elevati standard di sicurezza. Questo richiede un impegno totale da parte degli istruttori. Nei nostri simulatori non vi è un pulsante di emergenza che possa spegnere l’incendio, ventilare i fumi e raffrescare l’ambiente. Abbiamo dei sistemi di evacuazione di calore e fumo che però richiedono un certo tempo. Vi è quindi la necessità di garantire la sicurezza basandosi sulle procedure di lavoro, sulla preparazione degli istruttori e sulla fiducia reciproca che si instaura tra allievo e istruttore. Nel tentativo di creare questo clima di fiducia, l’istruttore trascorre del tempo insieme agli allievi spiegando a grandi linee quello che avverrà all’interno del simulatore e cosa ci si aspetta da loro….per completare la lettura clicca qui.

 

                                     Simulatore a combustibile solido 

 

 

Le azioni che dovremmo sempre eseguire

 

Questo articolo è tratto da una pubblicazione di Karel Lambert.  (http://www.cfbt-be.com/en/publications/articles)

John McDonough e Karel Lambert. Due tra i più grandi mentori dell’antincendio mondiale. (Foto di Ronald Ricour)

 

Sento molto spesso chiedere se vi sono delle regole da seguire durante la lotta agli incendi. La necessità di avere delle operazioni standard da effettuare sempre e comunque è un esigenza sentita da molti. Purtroppo stabilire delle regole auree che calzino a pennello in ogni occasione è qualcosa di estremamente difficile da ottenere. Pensiamo ad esempio alle POS (Procedure Operative Standard). Molte di esse sono così complesse e corpose nel tentativo di coprire quante più variabili possibile che di fatto sono difficilmente consultabili nell’urgenza di un evento incidentale. Questo è il motivo per quale in molte organizzazioni si sta passando dal rilasciare delle POS alle LGS (Linee Guida Standard). Quali differenze fra le due?

Linee guida
Un consiglio su come comportarsi in una data situazione;
Consigliato ma non obbligatorio.

Procedura
Una serie di passaggi dettagliati per raggiungere un fine;
Istruzioni passo passo per l’implementazione.

(fonte: http://www.hrsuccessguide.com/2014/01/Guideline-Procedure-Standard-Policy.html)

Se vi è una POS che descrive una determinata attività, tutti la devono seguire. Dal momento però che è praticamente impossibile scrivere POS che siano adatte ad ogni situazione, talvolta il ROS (Responsabile delle Operazioni di Soccorso) deve scostarsi dalla POS. Questo comporta doversi assumere delle responsabilità di non poco conto. Ritengo più efficace che vengano rilasciate delle linee guida che indichino gli obbiettivi ma di fatto lascino all’esperienza del responsabile la strada migliore per perseguirli. A suggello di quest’affermazione teniamo conto che la progressione di carriera nei ranghi operativi dei VF è basata esclusivamente sull’anzianità di servizio (AKA esperienza). Quindi non si può di certo affermare che l’esperienza operativa non sia tenuta in debito conto.

Nonostante tutto quello che si è scritto sopra, vi sono delle azioni che si possono eseguire praticamente in tutti gli attacchi incendio che fanno riferimento a civili abitazioni, uffici e piccole attività commerciali. Questo elenco di azioni e suggerimenti è una possibile risposta alla domanda iniziale,  vi sono delle regole da seguire sempre durante la lotta agli incendi?

 

I non negoziabili

1       Introduzione

Nel gennaio 2017 si è svolta la decima edizione del IFIW (conferenza internazionale degli istruttori antincendio). Quest’anno il gruppo si è riunito ad Hong Kong per scambiare nuove idee. Nell’articolo precedente è stata esposta la presentazione che ha elaborato il modello di “strategia-tattica-tecniche”. L’istruttore australiano John McDonough ha parlato delle diverse scelte tattiche che devono essere fatte sul campo. Nella sua presentazione ha auspicato un’innovativa modalità di combattere gli incendi dove vi sia spazio per pensare al di fuori degli schemi. Allo stesso tempo però, afferma che ci sono un certo numero di azioni che dovrebbero essere effettuate ad ogni attacco interno. Egli definisce queste azioni come non negoziabili, qualcosa cioè che non è in discussione.

2       Attacco interno

Negli ultimi 15 anni, le idee sull’attacco interno sono cambiate radicalmente. Agli uomini e alle donne che hanno cominciato in questo periodo, sono state insegnate molte di queste cose durante il loro addestramento di base. Non si può dire altrettanto di quanti sono entrati in servizio prima. Per loro, un sacco di cose sono mutate e altre ne stanno cambiando.

Lotta agli incendi a parte, i vigili del fuoco devono tenere il passo con i nuovi sviluppi in molteplici campi quali l’estricazione dai veicoli, le operazioni NBCR, ecc. È comprensibile che alcune persone perdano di vista il quadro d’insieme concentrandosi solo sui dettagli. Spetta alle scuole di formazione e ai loro istruttori spiegare le cose in maniera sufficientemente chiara per fare in modo che le nozioni importanti abbiano la giusta valenza. Le scuole devono essere abbastanza ambiziose a tale riguardo. Devono diffondere nuovi spunti anche quando sanno che l’implementazione di questi nuovi sviluppi richiederà molto tempo.

Alcuni miglioramenti offrono piccoli vantaggi e rendono certe cose più facili. Altri rappresentano dei miglioramenti cruciali. Questi sono ciò che rendono la lotta agli incendi più sicura ed efficiente. Incendi in edifici con piccoli compartimenti come abitazioni, appartamenti, alberghi, case di riposo, uffici più piccoli, ecc., accadono abbastanza spesso. Per tali incendi c’è una “ricetta” che può essere seguita per la maggior parte del tempo. Questo non è il caso di incendi in luoghi di grandi dimensioni, cinema, edifici industriali, ecc. In quelle situazioni, sarà necessario pensare fuori dagli schemi.

Nelle situazioni standard ci sono alcune cose che non sono negoziabili. Una squadra che esegue un attacco interno in una casa o in un ufficio dovrebbe sempre eseguire le seguenti azioni:

  1. Stare bassi;
  2. Controllare il flow-path (flusso di fumo dall’incendio all’uscita verso l’esterno);
  3. Raffreddare i fumi;
  4. Buttare acqua sull’incendio prima possibile;
  5. Utilizzare la termocamera.

3       I non-negoziabili

3.1      Stare bassi

In passato, ai pompieri veniva insegnato di entrare in un edificio in fiamme stando in piedi. Dopo tutto, al corso di formazione sugli apparecchi di protezione delle vie respiratorie (APVR) veniva utilizzato un metodo di avanzamento in stazione eretta. Tali tecniche all’estero sono scherzosamente chiamate “APVR salsa” o il “kung-fu dell’antincendio”. Avanzare in una stanza piena di fumo mentre si è in piedi, comporta un gran numero di svantaggi. È meglio restare bassi. Per restare bassi si intende mantenere sempre almeno un ginocchio sul pavimento.

 

Il passaggio da una posizione eretta ad una bassa mentre si avanzava verso il fuoco, fu introdotto per la prima volta nelle prime forme di addestramento all’incendio interno. È cosa nota che la temperatura all’interno del fumo è considerevolmente più alta rispetto al di sotto di esso. Pertanto una squadra d’attacco deve rimanere il più bassa possibile per assorbire la minima quantità di energia e quindi riscaldarsi il meno possibile. Alcuni colleghi sostengono che spesso accade che non è ancora troppo caldo quando entrano in un edificio e quindi possono rimanere in piedi nel fumo. Ignorano il fatto che a un certo punto potrebbe diventare troppo caldo. A quel punto saranno costretti ad abbassarsi per il caldo. Quando ciò accade, devono chiedersi se possono ancora continuare l’attacco interno. Il loro DPI avrà assorbito molto più calore di quello che avrebbe se fossero rimasti sempre bassi.

Una seconda ragione per rimanere bassi sul pavimento durante un attacco interno è la visibilità. Come la temperatura anche la visibilità è migliore sotto lo strato di fumo. Anche quando l’intera stanza è piena di fumo, ci sarà una (leggermente) migliore visibilità in basso. Laggiù, il fumo è sovente meno spesso, quindi una torcia utilizzata vicino al pavimento produrrà un risultato migliore. Inoltre, dal momento che il fumo è meno denso, sarà più facile individuare le fiamme più rapidamente che nel fumo. Infine, un po’ di visibilità in basso offrirà alcune informazioni sul layout della stanza. Dov’è il mobilio? Qual è il modo più veloce per la squadra di attacco di avanzare? Questa informazione è molto più difficile da cogliere restando in piedi.

Inoltre è decisamente più probabile che le vittime si trovino sul pavimento o vicino ad esso (ad esempio in un letto o su un divano). Raramente le vittime vengono trovate a un metro e mezzo dal pavimento. Una squadra in piedi sta semplicemente cercando con le proprie mani delle vittime all’altezza sbagliata. Vicino al terreno sarebbero decisamente molto più efficaci. È più facile esplorare in un letto o in un divano. Una squadra che sta bassa è all’altezza giusta per questa ricerca. È anche più facile cercare sotto gli oggetti (come un tavolo). Come prima questo è più difficile da fare mentre si sta in piedi. Rimanendo bassi si riducono le probabilità che una squadra oltrepassi una vittima senza accorgersene. Naturalmente, deve essere utilizzata una tecnica di ricerca adeguata. Muovendo le gambe in ampi cerchi, diventa facile cercare rapidamente una vasta area.

Bisogna considerare che c’è un angolo cieco quando si utilizza una termocamera. Tutto ciò che è vicino al pavimento, direttamente di fronte al pompiere, non può essere visto sullo schermo. Più è alta la termocamera, maggiore è l’angolo cieco. Questa è un’altra ragione per rimanere bassi sul pavimento.

Durante una tipica progressione in piedi, vi è una “gamba di supporto” e una “gamba per esplorare”. Quest’ultima è utilizzata per sondare la zona del pavimento direttamente davanti prima di spostare la gamba di supporto in avanti. Questo è fatto per evitare di cadere attraverso un buco nel pavimento. Rimanendo bassi, il centro di gravità si trova molto più in basso. La distanza dal pavimento è molto inferiore rispetto a in piedi. Questo riduce il rischio di entrare in un buco con il piede, perdere l’equilibrio e cadere in una buca o in una scala. In Belgio, è raro che un pompiere cada attraverso un buco o che un pavimento ceda. L’aumento delle costruzione alleggerite (vedi articolo precedente) potrebbe però incrementare questo rischio.

Mentre si è in piedi, ci sono solo due punti di contatto con il pavimento: i due piedi. Restando basso invece, si hanno almeno tre punti di contatto, la punta di entrambi i piedi ed un ginocchio. In questo modo, si è in una posizione molto più stabile. Quando un pompiere deve contemporaneamente avanzare e gestire una lancia, deve anche essere in grado di contrastare diverse forze di reazione. Non è facile gestirle stando in piedi in un ambiente a visibilità zero. Vicino al pavimento, ciò è più facile. Se un vigile del fuoco dovesse perdere l’equilibrio, le conseguenze di una caduta saranno meno gravi qualora fosse già vicino al pavimento. Si limiterebbe a rotolare o potrebbe, appoggiando una mano a terra mantenere la posizione. Perdere l’equilibrio cadendo dalla posizione eretta, è qualcosa da evitare in un ambiente pieno di fumo.

3.2      Controllo del flow path

Negli ultimi anni, negli incendi l’attenzione si è spostata sempre più verso il controllo del flow path. In Nord America, questo è più importante che in Belgio. Dopo tutto, la rottura delle finestre al fine di innescare una ventilazione orizzontale è stata una pratica standard per molti anni. In un incendio controllato dal combustibile, questo porterà alla rimozione del fumo senza che allo stesso tempo l’incendio veda incrementata la sua potenza. In passato, all’arrivo dei vigili del fuoco la maggior parte degli incendi erano controllati dal combustibile. Gli incendi avevano una velocità di sviluppo decisamente inferiore. Al giorno d’oggi, gli incendi avanzano molto rapidamente. Quando c’è sufficiente ventilazione, il flashover avviene nei primissimi istanti (meno di 4 minuti). La maggior parte delle volte però non vi sarà aria a sufficienza. Quando l’abitazione è chiusa, il fuoco diverrà controllato dalla ventilazione prima del flashover. Questo viene definito incendio sotto ventilato. Quando in questi incendi le finestre si rompono o vengono rotte, l’HRR aumenta rapidamente e si verificherà un flashover (indotto dalla ventilazione).

In Europa, le finestre raramente vengono rotte di proposito, la comprensione che l’apertura di una porta equivale a ventilare, è diffusa tra i vigili del fuoco. Dopotutto, una porta è un’apertura attraverso la quale l’aria può fluire nell’edificio. Nella lotta agli incendi moderni, è importante che il flow-path sia controllato in ogni momento. Questo può essere fatto posizionando qualcuno alla porta. Quella persona manterrà la porta chiusa il più possibile, agevolando l’entrata della mandata di attacco evitando frizioni alla porta. Se la porta è l’unica apertura, il controllo della stessa eviterà l’incremento dell’HRR. Se la porta è larga 90 cm ed è completamente aperta, la potenza sarà dieci volte maggiore rispetto a quando la porta viene limitata manualmente ad un’apertura di 9 cm. Un’apertura dieci volte più grande, significa che l’aria entrerà in quantità dieci volte maggiore. Questo significa un incendio dieci volte più potente.

L’introduzione dell’uomo alla porta è ancora agli albori in Belgio. Il servizio antincendio belga opera normalmente con minisquadre di due persone. Spesso i due binomi di una squadra tipo, sono ancora divisi in squadra di attacco e squadra per il rifornimento idrico. Questa è un organizzazione obsoleta. Mentre la prima squadra è adeguata, la seconda dovrebbe essere utilizzata basandosi sulla situazione in atto.

In un moderno servizio antincendio, dove i veicoli arrivano in posto da provenienze diverse, un capo partenza potrebbe scegliere di schierare un intera squadra (due binomi) per la mandata d’attacco. Può assegnare tre vigili del fuoco per far avanzare la mandata mentre un quarto rimane alla porta per controllare il flow-path. Ciò significa che il secondo binomio è diviso. Il capo partenza potrebbe anche scegliere di aiutare mettendosi dietro la squadra di attacco. In questo modo la mandata viene avanzata da cinque persone. Ciò favorisce uno stendimento e un avanzamento molto più rapido. Poiché al giorno d’oggi l’incendio avanza a un ritmo molto più rapido, questo può essere considerato un grande vantaggio. Tuttavia, è importante che il capo partenza mantenga un contatto radio con l’autista del mezzo all’esterno, in modo che possa tornare indietro per un breve briefing all’arrivo in posto del funzionario o di un altra squadra.

C’è un altro modo per gestire il flow-path. Il funzionario dei vigili del fuoco tedeschi Michael Reick ha inventato lo “smoke stopper” per questo scopo. Questo semplice dispositivo blocca l’apertura della porta usando una specie di coperta antincendio. Può essere posizionato nell’apertura della porta da un singolo pompiere. Nel caso in cui l’apertura sia verso l’interno, questo può essere fatto anche prima che la porta venga aperta. Pompieri ben addestrati possono svolgere questo compito anche in una stanza piena di fumo usando solo il tatto. Lo smoke stopper fa sì che il flusso di fumo, e quindi di gas caldi, si blocchi del tutto proteggendo dagli effetti dell’incendio i locali attigui. Lo smoke stopper fa un lavoro migliore di quello del pompiere alla porta, perché in quest’ultimo caso vi è sempre una piccola parte della porta aperta attraverso cui il fumo può uscire. Oltre a fermare il fumo in uscita, lo smoke stopper blocca anche la maggior parte del flusso d’aria verso l’interno. Solo alla base della porta, ne entrerà un po’. I vigili del fuoco di Anversa (che sono notoriamente un organizzazione moderna ed efficiente) hanno montato sulle loro autobotti di prima partenza lo smoke stopper. Anche i VVF di Bruxelles hanno iniziato a utilizzare il dispositivo e sicuramente molti altri ne seguiranno nel prossimo futuro. Un grande vantaggio dello smoke stopper è che i componenti le squadre rimangono liberi per altri compiti. Un capo partenza potrebbe scegliere di far entrare due binomi un appartamento. Il secondo binomio avrà il compito di posizionare lo smoke stopper sulla porta dell’appartamento. In questo modo dopo che la prima squadra ha iniziato l’attacco all’incendio, la seconda può dedicarsi alle operazioni di ricerca e soccorso.

Un ulteriore vantaggio del controllo del del flusso è che la velocità del fumo che fluisce attraverso l’edificio viene limitata. Negli incendi sotto ventilati, lo strato di fumo è molto vicino al pavimento. Ciò significa che i vigili del fuoco opereranno nel fumo. L’energia contenuta nel fumo impatterà sui vigili del fuoco. Più velocemente questo accadrà, più breve sarà il tempo in cui saranno in grado di lavorare in questo ambiente. Quando il loro DPI diverranno saturi di calore, saranno costretti a uscire fuori per non ustionarsi. La velocità con cui il calore viene trasferito dal fumo al pompiere aumenta all’aumentare della temperatura del fumo. Tuttavia, il trasferimento di calore aumenta anche in funzione della velocità del flusso di fumo. Maggiore è la velocità maggiore il calore trasferito. Limitare la velocità del flusso dello strato di fumo può offrire un vantaggio significativo per la squadra d’attacco.

In ogni caso, controllare il flow-path significa che deve esserci una buona procedura di passaggio porta. Fortunatamente, in Belgio la procedura di entrata è divenuta un metodo operativo ben conosciuto già da tempo. Anche se la procedura standard richiederebbe che alcuni dettagli siano migliorati, i vigili del fuoco in Belgio hanno compiuto notevoli progressi in quest’ambito.

Le tecniche associate all’apertura di una porta chiusa potrebbero richiedere ulteriore attenzione. Naturalmente quando si forza l’apertura di una porta, il flow-path deve essere controllato. Questo può essere fatto usando un anello cucito. Attaccare una fettuccia alla porta permette al pompiere di tirare indietro la porta dopo che è stata forzata. In questo modo, i vigili del fuoco evitano di non essere in grado di chiudere la porta nel momento in cui la serratura cede. Successivamente la fettuccia può essere utilizzata per controllare il flow-path. Un’altra possibilità è che la porta sia tenuta quasi completamente chiusa fino a quando non viene messo in posizione uno smoke stopper.

Seconda parte dell’articolo scaricandolo qui

 

Seminario: Tattiche e tecnologie per l’attacco all’incendio.

 

 

Seminario divulgativo

Bolzano, sabato 24 marzo 2018 dalle ore 15.00 alle 17.00

 

Gli ultimi vent’anni hanno visto un cambiamento importante nell’evoluzione dell’incendio all’interno degli edifici. A questo cambiamento non sempre ha fatto eco un adeguamento della lotta all’incendio. Qual è lo stato dell’arte delle tattiche d’intervento? Quali tecnologie meglio rispondono a quest’evoluzione?

 

 

“Se lo sviluppo dell’incendio è cambiato così tanto in questi ultimi anni, le tecniche e le tattiche devono adeguarsi a questo cambiamento”
Steve Kerber Director of the UL Firefighter Safety Research Institute

 

           Credit: http://www.seganosa.com/

Cosa è cambiato

Edifici con volumi interni maggiori che in passato, coibentazioni molto più efficienti, serramenti che resistono più a lungo durante l’incendio, combustibili che producono molto più fumo e richiedono grandi quantità d’aria per bruciare. Questa in estrema sintesi la trasformazione che è avvenuta negli ultimi anni. Alla luce dei cambiamenti avvenuti non sempre vi è stata una risposta adeguata nella lotta agli incendi. Si vedono ancora ad oggi metodologie di attacco che si riferiscono ad incendi che di fatto non esistono più.

Le conseguenze sulla salute dei soccorritori

Oltre ai possibili problemi acuti che possono avvenire durante le fasi dell’attacco all’incendio, vi sono anche delle problematiche croniche. In questi ultimi tempi si è stabilito in alcuni casi un nesso causa effetto tra l’attività di spegnimento degli incendi e lo sviluppo nei vigili del fuoco di alcune forme tumorali. In altre nazioni alcune sentenze hanno stabilito una correlazione diretta. Numerosi sono gli studi che sempre più sottolineano che l’attività di lotta agli incendi può avere conseguenze dirette sulla salute dei vigili del fuoco nel medio e lungo termine.

Impatto ambientale

Da non dimenticare poi i problemi ambientali, quanto incidono le attività di spegnimento dell’incendio sull’ambiente? Ci si è mai chiesti se le scelte operate siano in linea con la difesa dell’ecosistema? Se in parte è giustificabile che durante l’emergenza delle operazioni di spegnimento altre priorità prendano il sopravvento, non è giustificabile una scarsa attenzione all’ambiente in “tempo di pace”. Quali azioni combinano l’efficacia di spegnimento con la riduzione del danno correlato? Quali decisioni sarebbero da prendere? Siamo pronti ad un approccio culturale che comprenda anche queste attenzioni per l’ambiente?

Le possibili soluzioni

Anche se la filiera completa ( scuole di formazione, reparti operativi e produttori di attrezzature) sta lentamente adeguandosi, vi è ancora molta strada da percorrere. Solo facendo rete, creando sinergie tra tutti gli attori interessati vi è la possibilità di affrontare la sfida e uscirne vincitori. In questo contesto si inseriscono alcune metodologie di attacco all’incendio che utilizzando delle tattiche adeguate e con il supporto delle nuove tecnologie sono in grado di meglio rispondere alle esigenze dei giorni nostri.

 

 

Iscrizioni mandando una mail a civilprotect@fierabolzano.it entro venerdì, 16 marzo.

Schiume antincendio e sistemi CAFS caratteristiche e modalità d’uso.

L’11 ed il 12 di ottobre si è tenuto presso il Comando provinciale dei Vigili del Fuoco di Brescia un seminario dal titolo: Utilizzo delle schiume antincendio.

Il tutto organizzato dal Comando di Brescia con il placet del Capo del Corpo Nazionale dei Vigili del Fuoco che ha altresì delegato il personale del Centro di Documentazione del Piemonte di redigere i documenti filmati che potranno essere utilizzati dalla Direzione Centrale della Formazione.

Il comando di Trento ha risposto positivamente alla richiesta di inviare due rappresentanti per fare da relatori e portare la propra esperienza.

Il seminario ha visto il ripetersi nei due giorni dello stesso programma al fine di favorire la partecipazione del maggior numero  possibile di personale operativo con l’aggiunta, nella sola giornata di giovedì 12 ottobre, di un momento di confronto dedicato ai  Funzionari..

Da sottolineare la presenza di rappresentanti dei Comandi della Lombardia che hanno favorevolmente risposto all’invito.

Qui sotto la presentazione utilizzata durante il seminario. e un piccolo estratto video (grazie al cs Mauro Lai per la ripresa video) ed un foglio di calcolo con impostate le formule per il calcolo del concentrato schiumogeno in funzione delle portate critiche e delle dimensioni dell’incendio.

 

 

 

https://luparisi.files.wordpress.com/2017/10/calcolo-consumi-schiumogeni.xlsx

 

La respirazione ideale per il vigile del fuoco in intervento

 

Disclaimer: prima di cominciare desidero avvisare che le informazioni contenute in questo scritto non hanno alcuna pretesa di sostituirsi alle informazioni che possono essere date da un medico. Io non ho alcuna competenza medica. Le informazioni riportate sono il frutto degli anni di esperienza come formatore in ambito di protezione delle vie respiratorie e dei mie studi. Nella prima parte vi è una sintesi di come agisce il nostro organismo. A mio giudizio è utile avere una conoscenza di base dei fenomeni fisici. Questo perché permette di avere un approccio più pragmatico. Per quanti non sono invece interessati a ciò, possono saltare la prima parte ed andare direttamente all’ultimo paragrafo.

Quando si parla di respirazione nell’ambito della lotta agli incendi non è sempre facile reperire le giuste informazioni. Si trovano facilmente indicazioni generiche sull’argomento (alcune estremamente interessanti), ma con il difetto di fondo di non essere specifiche alle attività di soccorso. A questo punto ai più attenti potrà sorgere un dubbio. “Ma come, non è la stessa cosa respirare in aria aperta o con un apparecchio di protezione delle vie respiratorie (APVR)?” La risposta è no, non è la stessa cosa. O quanto meno se i processi fisiologici sono i medesimi non lo deve essere l’atteggiamento dell’utilizzatore. Sono tante le differenze tra il respirare con o senza un APVR. Quella che ha il maggiore impatto è sicuramente il fatto che si ha a disposizione una riserva d’aria limitata! Questa consapevolezza deve accompagnare il soccorritore costantemente.

Dobbiamo imparare a respirare con l’autorespiratore sfruttando ogni singolo litro di aria contenuto nella bombola e non semplicemente facendolo passare attraverso la valvola di esalazione della maschera.

Assodato quindi che ci sono delle differenze e che le dobbiamo tenere in considerazione, prendiamo in esame gli elementi principali dell’apparato respiratorio e soprattutto rispondiamo ad una domanda fondamentale: perché dobbiamo respirare?

Si deve respirare per fornire costantemente uno dei reagenti della reazione che è alla base della vita, la respirazione cellulare.

Qui troviamo la prima sorpresa, per respirazione abbiamo sempre inteso l’atto di introdurre aria all’interno del nostro organismo. Scopriamo invece che vi è una definizione di respirazione che non collima con quanto abbiamo sempre pensato. Andiamo quindi a definire esattamente i vari termini:

Ventilazione

La ventilazione è un processo fisico meccanico ed automatico. Mediante l’azione diretta dei muscoli respiratori permette all’aria di entrare ed uscire dai polmoni. Questo processo è controllato dal nostro organismo a livello centrale.

La ventilazione è divisa in due azioni distinte. Le due fasi sono l’inspirazione e l’espirazione. L’espansione e successiva contrazione della gabbia toracica avvengono grazie all’azione dei muscoli respiratori. Gli stessi si dividono in primari (muscoli involontari, che non sotto il controllo diretto della nostra volontà) e secondari o accessori (muscoli volontari, che possiamo controllare).

I muscoli respiratori primari sono:

Diaframma: si contrae in modo involontario abbassandosi causando la diminuzione della pressione nei polmoni, i quali tendono a espandersi e, dunque, richiamano aria dall’esterno: in tal modo si verifica l’inspirazione;

Muscoli intercostali;

Muscoli sternocleidomastoidei: innalzano lo sterno;

Muscoli scaleni: sollevano le prime due costole.

L’espirazione avviene in modo passivo per rilassamento del diaframma e degli altri muscoli. L’espirazione può avvenire in modo volontario. In questo caso sono coinvolti i muscoli addominali (obliqui, retto e trasverso) che sono per questo definiti muscoli respiratori accessori (volontari)

 

Respirazione

Per respirazione, fisiologicamente parlando, si intende un termine molto ampio che comprende:

  • Respirazione esterna
  • Respirazione interna o cellulare

Respirazione esterna

La respirazione esterna è il processo deputato a conservare il giusto ratio tra ossigeno e CO2 all’interno delle cellule. La respirazione esterna caratterizza tre differenti azioni:

1) L’azione meccanica di entrata ed uscita dell’aria dall’organismo;

Elementi che permettono il trasporto dell’aria verso i polmoni

1) Naso: Al fine di proteggere le vie respiratorie da agenti patogeni estranei, di agevolare il passaggio dell’aria e di massimizzare l’efficacia dell’aria introdotta il naso svolge molteplici funzioni:

Filtra. Forse la caratteristica meno importante durante l’utilizzo degli autorespiratori a circuito aperto (essendo l’aria filtrata a monte);

Riscalda. L’aria dell’autorespiratore è fredda a causa dell’espansione dei gas. La sensazione di aria fresca è sicuramente piacevole in determinate situazioni ma non è la condizione migliore ai fini della cessione dell’ossigeno. Respirare con il naso comporta un aumento di temperatura dell’aria sino a raggiungere all’incirca la temperatura corporea;

Umidifica. L’aria contenuta nella bombola è secca. Il contenuto di acqua nelle bombole deve essere inferiore a pochi milligrammi per metro cubo, pena il rischio che ghiacci durante l’uso intenso. L’aria per poter essere assimilata in modo ottimale richiede che sia satura. Se l’aria viene inspirata dal naso la stessa ha modo di potersi arricchire di umidità;

2) Faringe. La faringe è una camera comune al sistema respiratorio e a quello digerente in quanto stabilisce una comunicazione sia con la laringe sia con l’esofago;

3) Laringe. L’aria passata attraverso la faringe si immette nella laringe. All’ingresso della laringe si trova l’epiglottide, un lembo di tessuto cartilagineo che regola il passaggio dell’aria;

4) Trachea; Alla laringe segue la trachea, un tubo rigido ma allo stesso tempo flessibile. Essa è costituita da una serie di anelli cartilaginei (una ventina circa) Gli anelli impediscono alle vie aeree di collassare durante l’ispirazione. All’estremità inferiore, circa all’altezza della quarta vertebra toracica, la trachea si biforca in due grossi bronchi che riforniscono d’aria i due polmoni

5) Bronchi. Hanno una struttura simile alla trachea. Man mano che la loro ramificazione procede, la forma degli anelli cartilaginei diviene sempre più irregolare. Nella parete bronchiale si trovano placche cartilaginee sempre più distanziate e più piccole. I bronchi si ramificano in diversi tipi di bronchioli di diametro decrescente all’interno dei polmoni.

Il naso, la faringe, la laringe, la trachea e gli stessi bronchi e bronchioli non partecipano alla seconda fase, quella dello scambio dei gas, ma hanno solo il compito di trasportare aria ossigenata agli alveoli polmonari e di rimuovere da questi l’aria satura di biossido di carbonio.

 

2) La cessione della CO2 e dell’ossigeno dal sangue all’alveolo e viceversa;

Alveoli: La più piccola unità polmonare visibile a occhio nudo è il lobulo. Un lobulo è costituito da uno o più bronchioli, da rami arteriosi e venosi del circolo bronchiale e da migliaia di alveoli. L’alveolo, delle dimensioni di circa 1/10 mm, possiede una esilissima parete intorno alla quale capillari estremamente sottili trasportano sangue povero di ossigeno.

Nell’ottica di massimizzare l‘efficienza della respirazione bisogna considerare che la parte alta dei polmoni è meno vascolarizzata e non ha la stessa fitta rete di capillari che circonda gli alveoli della parte bassa. Questa spiega perché è così importante far affluire l’aria nella parte bassa dei polmoni.

Gli alveoli, distribuiti a grappolo d’uva attorno a un bronchiolo terminale, sono completamente avvolti da un fittissimo intreccio di microscopici capillari. Poiché lo spessore delle pareti alveolari e dei capillari non è mai superiore a quello di una cellula, l’aria viene a trovarsi vicinissima al sangue circolante. Le cellule epiteliali degli alveoli sono ricoperte in permanenza da una sottile pellicola liquida, nella quale i gas possono sciogliersi e diffondere così attraverso le membrane. Il sangue che irrora gli alveoli è quello pompato ai polmoni dal cuore dopo aver completato il suo giro per tutto il corpo. Provenendo dalla periferia del corpo è povero di ossigeno e ricco di biossido di carbonio. Il processo chimico dello scambio di gas avviene “per diffusione”: una sostanza “diffonde” sempre dà A verso B se la sua concentrazione è più alta in A che in B. Negli alveoli la concentrazione di ossigeno è più bassa di quella dell’aria inspirata e più alta di quella del sangue dei capillari circostanti. Nel caso del biossido di carbonio la differenza è piccola, ma è sufficiente, grazie alla buona diffusibilità di questo gas, a eliminare il biossido di carbonio prodotto.

Sangue arterioso:

  • Contenuto O2, ± 95 mm Hg
  • Contenuto CO2, ± 40 mm Hg

Sangue venoso:

  • Contenuto O2, ± 40 mm Hg
  • Contenuto CO2, ± 46 mm Hg

Da notare come il contenuto di ossigeno nel sangue venoso sia ancora notevole. Pertanto quello che è stato introdotto nei polmoni con l’aria, che è passato nel sangue arterioso, non è rilasciato tutto alle cellule dei vari tessuti, che ne avrebbero un grande bisogno, ma resta in parte nel sangue e, con il sangue venoso torna ai polmoni da dove viene in buona parte restituito all’aria con l’espirazione. Questa affermazione riveste grande importanza nel momento in cui l’aria disponibile è in quantità limitata. Molto dell’ossigeno che è contenuto nell’aria delle bombole non viene adeguatamente utilizzato dall’organismo.

3) Il trasporto della CO2 e dell’ossigeno per mezzo del sangue verso e da i tessuti;

Il sistema cardiovascolare è formato dal cuore e dai vasi sanguigni che sono responsabili del continuo flusso di sangue in tutto il corpo. Il sangue circola nel sistema cardiovascolare e la sua funzione principale è quella di trasportare ossigeno alle cellule che compongono l’organismo.

Questo sistema è formato da una serie di vasi sanguigni, le arterie e le vene. L’energia per far circolare il sangue viene fornita dal cuore, che durante la fase di contrazione si spreme come una spugna e spinge il proprio contenuto nelle arterie principali. Terminata la contrazione, il cuore si rilascia e il sangue ritornando attraverso le vene lo riempie di nuovo preparandosi ad una nuova contrazione.

Il sangue viene spinto fino alla più estrema periferia, nel letto capillare, dove può svolgere la sua funzione di nutrimento dei tessuti. Una persona adulta ha circa 5 litri di sangue che circolano nel proprio corpo in circa 1 minuto.

Nelle arterie scorre il sangue ricco di O2. Esse si ramificano nel corpo in vasi sempre più piccoli sino a formare una rete di vasi piccolissimi, detti capillari sanguigni, che si trovano tra le cellule dei vari organi. È proprio nella rete dei vasi capillari che il sangue rilascia l’O2 alle cellule e queste cedono la CO2 al sangue.

I capillari poi convergono in una serie di vasi sanguigni di dimensioni crescenti chiamati vene e che riportano il sangue al cuore.

La respirazione cellulare

Per trasformare l’energia delle sostanze nutritive come lo zucchero, le cellule utilizzano un processo biochimico conosciuto con la definizione di respirazione cellulare. La respirazione cellulare è un processo esotermico di ossidoriduzione, una combustione controllata, che consta di una catena di reazioni.

La produzione di energia per mezzo della respirazione cellulare richiede un rifornimento continuo di ossigeno e genera, come prodotto anche del biossido di carbonio. Il sistema respiratorio permette la respirazione cellulare prelevando l’ossigeno dall’aria inspirata ed eliminando il biossido di carbonio dall’organismo.

Cibo +O2 → CO2 + H2O + ATP*

* ATP= Adenosintrifosfato (cioè energia)

L’ ATP è la molecola nella quale viene temporaneamente immagazzinata l’energia ottenuta dalla respirazione cellulare. E’ presente in piccolissima quantità all’interno della cellula e viene continuamente prodotta. La quantità totale presente, in un dato momento nel corpo umano è nell’ordine di 1 grammo (non soddisfa le esigenze di un lavoro muscolare intenso di pochi secondi). Nell’arco di 24 ore senza che vi siano sforzi importanti ne vengono prodotti indicativamente alcune decine di kg (40/50 kg).

I muscoli traggono principalmente la loro energia da questa sostanza.

 

Produzione di ATP

La produzione di ATP può derivare da:

  • Utilizzando un meccanismo aerobico, nel quale vi è una combustione di zuccheri e grassi in presenza di ossigeno (come prodotti finali, oltre all’energia, si hanno biossido di carbonio ed acqua). Questo sistema è il meno dispendioso perché non vi è formazione di scorie. Infatti, con la respirazione polmonare la CO2 può essere facilmente estratta dal sangue;
  • Dagli zuccheri senza la presenza di O2 (meccanismo anaerobico). Energeticamente parlando più dispendioso perché con l’utilizzo della stessa quantità di zuccheri si ottiene meno ATP, rispetto all’attività aerobica e inoltre perché vi è produzione e accumulo di acido lattico (elemento limitante la prestazione).

L’acido lattico, che abbiamo visto essere un sottoprodotto dell’attività anaerobica dei muscoli, si riversa da quest’ultimi nel sangue. Veicolato dal sangue raggiunge cuore, fegato e muscoli inattivi, dove viene riconvertito in glucosio. Nondimeno, durante un esercizio fisico impegnativo (per intensità e/o per durata), è possibile che i muscoli producano nell’unità di tempo più acido lattico di quanto si riesca a metabolizzare. La concentrazione di acido lattico nel sangue aumenta fino al punto in cui i muscoli attivi non riescono più a metabolizzarlo. Questo genera affaticamento e successiva incapacità di sostenere lo sforzo, talvolta accompagnato da bruciore. Tuttavia nel momento in cui i muscoli riprendono la loro normale attività aerobica, l’acido lattico viene eliminato dal circolo sanguigno (nel giro di qualche decina di secondi o di pochi minuti). La gran parte di quanto se n’era accumulato nei muscoli attivi viene smaltito. Questa è un operazione che richiede tutt’al più un paio di ore dall’inizio dell’attività fisica.

Qualcuno si potrebbe chiedere che importanza rivestono queste informazioni al vigile del fuoco. La domanda è lecita ma richiede un ulteriore approfondimento prima di essere evasa.

Qualcuno di voi ha mai provato a misurare la saturazione dell’ossigeno nel sangue? Solitamente si usa uno strumento conosciuto con il nome di saturimetro o di ossimetro. Molto spesso disponendo anche di un misuratore del battito cardiaco assume la definizione di pulsiossimetro. Questo strumento permette il monitoraggio non invasivo della saturazione di ossigeno dell’emoglobina arteriosa (SpO2) e della frequenza cardiaca. I valori sono espressi in percentuale per quanto riguarda l’ossigenazione e in bpm per il battito. Un interpretazione speditiva (laica e non medica) dei valori è la seguente:

  • In un adulto in condizioni normali l’emoglobina legata è compresa tra il 96% e il 99%;
  • Se 100% si potrebbe essere in presenza di una possibile iperventilazione. La ragione potrebbe essere un attacco d’ansia, tachicardia o attacchi di panico;
  • Se il valore è tra il 93% e il 95% vi potrebbe essere una leggera ipossia;
  • Al di sotto del 92% indica un insufficienza di ossigeno nel sangue.

Da quando sono solito monitorare la saturazione degli allievi non ne ho trovato nemmeno uno che fosse al di sotto del 93%. Questo nonostante il fatto tutti abbiamo ben presente la sensazione di fatica legata alla sensazione di non “avere abbastanza aria”. Come possono coincidere le due cose? Quantità adeguata di ossigeno legato all’emoglobina in circolo nel sangue arterioso con l’oggettiva difficoltà a portare a termine l’esercizio proposto? Per avere tutti gli elementi per rispondere al quesito serve fare un ulteriore precisazione. Bisogna in effetti conoscere le dinamiche che regolano la frequenza degli atti respiratori nell’organismo?

La frequenza degli atti respiratori è governata dalla quantità di CO2 prodotta dai processi di respirazione cellulare.

Nel midollo allungato, (conosciuto anche come medulla oblongata o mielencefalo), che è parte del tronco cerebrale risiedono i centri bulbari della respirazione. Il midollo allungato è l’organo che contiene al suo interno i neuroni recettori che controllano la concentrazione del CO2 nel sangue. La quantità di CO2 prodotta quindi regola l’ampiezza e la profondità degli atti respiratori. Infatti un livello elevato di biossido di carbonio segnala un aumento dell’attività cellulare e quindi un maggior fabbisogno di ossigeno. I recettori perciò reagiscono immediatamente ordinando un’intensificazione del ritmo e della profondità del respiro. Questi recettori sono molto sensibili, lo 0.3% in più di biossido di carbonio comporta un aumento significativo (può arrivare al doppio) degli atti respiratori.

Vi sono anche altri “sensori”. I chemiocettori, situati nell’arco aortico e alla biforcazione delle carotidi sono sensibili alle variazioni della PCO2 (pressione parziale della CO2), ma anche alla diminuzione della PO2 e del pH; quando si esegue uno sforzo muscolare intenso, i muscoli consumano molto O2 e producono CO2, determinando, inoltre, una diminuzione del pH del sangue. Queste tre azioni combinate (aumento della PCO2, diminuzione della PO2 e variazione del pH) determinano una scarica di impulsi nervosi, che, da questi recettori convergono sia al centro respiratorio, aumentando la frequenza e la profondità del respiro, sia al centro cardio-regolatore, aumentando la frequenza e l’ampiezza del battito.

La frequenza respiratoria, dunque, è determinata soprattutto dalla quantità di CO2 che è necessario espellere dall’organismo.

Il problema è che molto spesso la soglia di tolleranza dell’organismo nei confronti della concentrazione di CO2, sia molto bassa e ciò comporta che vi sia l’impulso di espirare anche se i valori sono tutt’altro che eccessivi, anzi sono molto bassi. Di conseguenza si respira troppo e si elimina una quantità eccessiva di CO2.

Qui vi è l’ennesimo colpo di scena. Cosa comporta una bassa soglia di tolleranza alla CO2?

Comporta che l’organismo sia meno efficiente negli scambi O2-CO2 a livello cellulare. Vediamo nel dettaglio come avviene questo scambio e cosa lo favorisce.

Per farlo ci aiutiamo facendo un parallelo con l’alimentazione[i]. È cosa nota che per nutrirsi bene non basta riempire lo stomaco con la maggior quantità possibile di cibo; occorre invece che gli elementi nutritivi del cibo (mangiato in quantità giusta) passino nel sangue e da questo nei vari tessuti dell’organismo. Se qualcosa in questi meccanismi di assimilazione non funziona, si può morire di fame pur mangiando il giusto. E’ questo ad esempio quello che accadeva ai diabetici prima della scoperta dell’insulina. Il loro sangue era pieno di zucchero ma mancava dell’elemento (l’insulina) che permette che possa essere rilasciato ai tessuti, che di conseguenza “morivano di fame”. Al contrario quando si pensa alla necessità di respirare si è quasi tutti portati a pensare che “tanto è meglio”. Da qui il detto di prendere un bel respiro, fare un respiro a bocca piena e così via.

Cosa succede una volta introdotto l’O2 nei polmoni? Innanzitutto l’O2 deve passare dai polmoni al sangue (e, salvo casi di malattie polmonari o bronchiali, questo quasi sempre funziona bene). Dal sangue, l’ossigeno deve poi essere assimilato dalle cellule dei tessuti dei vari organi. E qui invece si verificano molto spesso dei problemi. Cosa succede? Accade che le particelle di ossiemoglobina del sangue (e cioè l’emoglobina che, dopo avere assimilato l’ossigeno, si è appunto trasformata in ossiemoglobina) trattengono strettamente l’ossigeno, rifiutando di cederlo e lasciarlo passare nei tessuti. Gli organi soffrono di carenza di ossigeno, pur in presenza di un sangue saturo di ossigeno, esattamente come gli organi dei diabetici soffrono di mancanza di zucchero pur in presenza di un sangue saturo di zucchero! Come mai? Perché per consentire il passaggio dell’ossigeno dal sangue ai tessuti è necessaria la presenza di biossido di carbonio in quantità sufficiente. In assenza di CO2 nella giusta concentrazione, l’ossiemoglobina nel sangue non può liberare l’ossigeno e lasciarlo passare nei tessuti in misura sufficiente!

La necessità della CO2 per il passaggio dell’O2 dal sangue ai tessuti è stata scoperta agli inizi del secolo scorso e prende il nome di “effetto Verigo-Bohr”[ii]. L’atmosfera ha una concentrazione di ossigeno del 21%, potenzialmente alle nostre cellule ne potrebbe bastare anche un po’ meno. Le nostre cellule hanno invece bisogno di una concentrazione di biossido di carbonio al 6,5% mentre l’atmosfera ne contiene solamente lo 0,03%. Siamo ancora molto lontani dal 6,5% presente nell’organismo dei bambini nel grembo materno e all’interno delle nostre cellule da adulti. La CO2 non è quindi soltanto un prodotto di scarto dei processi di respirazione cellulare ma è necessaria per molte funzioni nell’organismo umano; è tra l’altro essenziale per consentire il passaggio dell’ossigeno dal sangue alle cellule dei tessuti. In assenza di CO2 questo passaggio non avviene. E’ indispensabile quindi che nell’organismo vi sia la quantità giusta di CO2. Una respirazione eccessiva, profonda e rapida, provoca, con l’espirazione, una perdita eccessiva di CO2, e questa perdita provoca a sua volta degli scompensi nell’organismo.

Ora abbiamo tutti gli elementi per poter formulare le risposte e possiamo quindi tornare alla domanda principe.

Qual è l’aspetto che ha maggiore impatto durante gli interventi con autorespiratori?

La risposta non può essere altro che: l’autonomia limitata dal fatto di non avere una riserva d’aria infinita.

Quali sono le situazioni che ingenerano i comportamenti più virtuosi?

  1. Avere un alta soglia di tollerabilità della CO2;
  2. Attivare il centro respiratorio in maniera tale che, scaricando la CO2 in eccesso, esso riduca la frequenza respiratoria.

La cosa sembra impossibile da ottenere. L’efficienza più elevata si ha quando il nostro organismo sopporta elevati livelli di CO2. Cosa che favorisce la cessione di ossigeno dal sangue ai tessuti. Al tempo stesso però si dovrebbe favorire la fase di espirazione per scaricare la CO2 prodotta al fine di ridurre la frequenza respiratoria.

Quale è la situazione nella quale invece è molto più frequente imbattersi?

  1. Bassa soglia di tollerabilità alla CO2;
  2. In caso di aumentato fabbisogno di O2 da parte del nostro corpo, una iperventilazione spinta generata dalla preponderanza della fase di inspirazione sull’espirazione.

 

Cosa comporta questo?

Si ingenera una reazione a catena che fa sì che si elimini la CO2 prima che raggiunga i valori ottimali e che vi sia una preponderanza dell’inspirazione rispetto all’espirazione. Più introduco O2, più devo compiere un lavoro.

Durante l’intervento con gli autorespiratori se questo circolo non viene interrotto, porta a “buttare via” tutta la riserva d’aria a disposizione.

Questo è un aspetto molto importante e da tenere nella giusta considerazione. Significa che in caso di uno sforzo che comporta un aumento degli atti respiratori, per ridurre la frequenza bisogna agire sulla profondità e l’efficacia della fase di espirazione.

Normalmente si è portati a privilegiare l’inspirazione accorciando la fase di scarico. Si ottiene però l’effetto contrario perché, aumentando la frequenza si svolge un lavoro maggiore che richiede più ossigeno e di conseguenza una maggiore CO2 che viene rilevato dai ricettori del centro respiratorio che ordinano di aumentare la frequenza respiratoria, si entra quindi in un circolo vizioso che potrebbe avere conseguenze pericolose.

Più O2 per compiere il lavoro, meno tollerabilità alla CO2 = frequenza respiratoria elevatissima.

Ultimo elemento utile da conoscere è la definizione esatta di iperventilazione. Cosa significa “iperventilare?” Più che “respirare troppo” in assoluto, significa invece respirare in modo non adeguato ed eccessivo rispetto alle esigenze dell’organismo impegnato in una determinata attività. Una respirazione che sarebbe adeguata se si stesse correndo o comunque svolgendo attività fisica, (e durante l’attività fisica l’organismo produce una grossa quantità di CO2, che deve in effetti essere in parte eliminata) è invece eccessiva e dannosa se non si sta compiendo un intensa attività fisica (per i vigili del fuoco per esempio potrebbe essere al momento della ricezione dell’allarme). In questo caso l’organismo reagisce, in base ad un istinto primordiale, (la cosiddetta “risposta adrenergica, spavento = combatti o fuggi”) come se si fosse in presenza di un pericolo che richiederà un’intensa attività fisica e che scatena l’impulso a respirare molto, appunto in previsione dell’attività fisica con accumulo di CO2 che invece in genere non avviene, perché si resta seduti (falso allarme, attività che non richiede dispendio fisico, ecc.). Il frequente ripetersi di questi episodi di stress quotidiano porta allo sfasamento del ritmo respiratorio, che diviene in permanenza, anche quando si dorme, un po’ più intenso del necessario.

Tecniche di respirazione conservative dell’aria

Ora che abbiamo la conoscenza dei meccanismi dell’organismo possiamo ipotizzare delle risposte operative. Quando si usa un apparecchio di protezione delle vie respiratorie, quale tipologia di respirazione è più idoneo utilizzare?

La risposta prevede tre metodologie diverse in funzione dello sforzo che si sta compiendo e dello scenario operativo.

I tre sistemi sono elencati in ordine decrescente di frequenza di utilizzo e di “preferibilità” di adozione.

1) Naso in – naso out. È senza ombra di dubbio la tecnica di respirazione che permette di massimizzare l’efficienza respiratoria. Vediamo nel dettaglio perché questo avviene.

Essa consiste in:

  • Inspirare normalmente con il naso;
  • Espirare normalmente con il naso.

Inspirazione dal naso. Favorisce:

  1. Aumento del tasso di umidità dell’aria;
  2. Aumento della temperatura dell’aria;
  3. Favorisce la respirazione diaframmatica. L’uso del diaframma a sua volta consente:
    1. Una respirazione più profonda andando ad interessare la parte più vascolarizzata dei bronchi;
    2. Una respirazione che richiede meno energia. Il movimento del diaframma non richiede di innalzare o muovere altre parti del corpo come invece succede con la respirazione toracica (spostamento all’esterno della gabbia toracica e verso l’alto della testa);
  4. Riduce di molto le possibilità di entrare in affanno. L’affanno è probabilmente il pericolo maggiore per quanti utilizzano degli APVR;
  5. Ha il vantaggio di favorire una respirazione più capiente rispetto a quella toracica, con conseguente diminuzione del ritmo cardiaco e aumento della resistenza all’affaticamento, un aspetto molto importante durante gli interventi con autorespiratori;
  6. Mediamente un individuo che utilizza la respirazione addominale esegue circa 10 atti respiratori al minuto. Chi invece utilizza la respirazione toracica, esegue mediamente 15/16 atti respiratori al minuto;
  7. Porta una maggiore quantità di sangue agli organi inferiori.

Espirazione con il naso. Favorisce:

  1. Riduzione della quantità di CO2 dispersa per effetto dell’espirazione. Abbiamo visto che la CO2 è indispensabile per favorire lo scambio O2-CO2 a livello cellulare. Espirando con il naso quindi aiuta a mantenere elevata la quantità di CO2 prodotta dalle cellule;
  2. Riduce la quantità di vapor d’acqua disperso per effetto della Perspiratio insensibilis. A causa della ridotta efficienza del sistema che consente la termoregolazione (a causa del DPI EN 469 il sudore prodotto dal nostro corpo non può evaporare) è indispensabile mantenere elevati livelli di idratazione dell’organismo. Espirando con il naso si dimezza la quantità d’acqua espirato rispetto a quanto avviene con la bocca.

Adottare sempre questo sistema permette di raggiungere due obbiettivi diversi:

  • Obbiettivo a breve termine. Il risultato a breve termine è quello di utilizzare la tecnica di respirazione che permette il massimo dell’efficienza in termini di consumo di aria e produzione energetica;
  • Obbiettivo a medio-lungo termine. Utilizzare questa tecnica abitua l’organismo a sopportare livelli più elevati di CO2. Un po’ alla volta quindi si sposta verso l’alto l’asticella del livello di CO2

Nel momento in cui non è più sostenibile respirare utilizzando il solo naso si hanno di fronte due possibili scelte. La prima è quella di ridurre il carico di lavoro. Molto spesso sarebbe sufficiente semplicemente rallentare un po’ mantenendo livelli elevati di efficienza respiratoria. Qualora questo non fosse possibile la seconda possibilità prevede di utilizzare la seconda metodologia di respirazione.

2) Naso in-bocca out. Conosciuta come R-EBT. Questa tecnica è stata sviluppata da KEVIN J. REILLY membro del consiglio del Fire Safety Directors Association of New York City[iii];

R-ebt sta per: Reilly Emergency Breathing Tecnique (tecnica di respirazione in emergenza Reilly).

Essa consiste in:

  • Inspirare normalmente con il naso;
  • Espirare con la bocca, parzializzando l’apertura e prolungando l’espirazione;

Come si può notare non è richiesto nulla di complicato da realizzare. La particolarità consiste nel inspirare con il naso (scaldando e inumidendo l’aria) ed espirare con la bocca. Con la parzializzazione dell’apertura della bocca si ottiene il duplice scopo di forzare leggermente la fuoriuscita dell’aria e conseguentemente di prolungare la fase di scarico.

I vantaggi dell’inspirazione con il naso sono i medesimi della tecnica precedente. Mentre utilizzare l’apertura della bocca per espirare permette di ridurre il livello di CO2. Livello elevato che obbliga il nostro organismo ad aumentare la frequenza degli atti respiratori. L’azione ragionata di espirare con la bocca impedisce di inspirare con la stessa bocca come prima risposta ad uno stimolo di “mancanza d’aria”. Cosa che abbiamo visto essere deleteria per la durata della riserva d’aria.

Quindi in risposta ad un carico di lavoro maggiore che non consente di mantenere il profilo di respirazione ottimale, naso-naso, si può rispondere aumentando la durata della fase di scarico utilizzando la bocca.

3) Naso in – bocca out in emergenza. Skip breathing o “salto del respiro”

Essa consiste in:

  • Inspirare normalmente con il naso;
  • Effettuare una piccola pausa (non deve essere stressante);
  • Inspirare normalmente con il naso;
  • Effettuare una piccola pausa (non deve essere stressante);
  • Espirare con la bocca, parzializzando l’apertura e prolungando l’espirazione

Deve essere chiarite sin dall’inizio che questa metodologia di respirazione può essere utilizzata solo in caso d’emergenza. Deve essere “l’estrema ratio”.

Originariamente sviluppato per la subacquea, può essere utilizzato anche dal singolo pompiere. Il primo passo consiste nell’inspirare e trattenere il respiro. Quando si sente il bisogno di espirare, si prende un respiro supplementare e poi si espira lentamente. Dopo aver esalato, si deve trattenere di nuovo il respiro fino a quando non si ha bisogno di respirare. Tuttavia, la persona non deve trattenere il respiro fino a provare disagio. La durata della pausa può durare solo pochi secondi e varia da persona a persona.

Ci si può chiedere: “Perché non utilizzare questa tecnica ogni volta che si usa un autorespiratore?” Perché per i vigili del fuoco, il solo e unico scopo di questa tecnica, è quello di essere uno “strumento salvavita”, non un metodo per migliorare le prestazioni di lavoro. I vigili del fuoco impegnati nel salto del respiro devono concentrarsi sul proprio respiro, non possono pensare agli altri compiti. Inoltre, trattenere il respiro può avere conseguenze fisiche, come l’ipossia. Oltre a ciò, durante le normali operazioni di lotta contro l’incendio, i vigili del fuoco consumano un sacco di energia e hanno bisogno di ossigeno supplementare per soddisfare questa condizione. Anche se la tecnica è relativamente semplice, la concentrazione mentale necessaria è notevole.

In primo luogo, il vigile in difficoltà deve attuare le normali procedure di Mayday, come chiedere aiuto tramite la radio personale, indicare la propria posizione (se nota), posizionarsi lungo il perimetro delle pareti, e così via. Se il vigile è intrappolato e in attesa di soccorso, dovrebbe cominciare ad utilizzare lo Skip Breathing al più presto per conservare quanta più aria possibile. Facendo ciò si aumenterà il tempo a disposizione delle squadre di soccorso per individuarlo.

Anche se questa tecnica è relativamente semplice, deve essere provata più volte in addestramento per poterla utilizzare efficacemente in caso d’emergenza.

Conclusioni

La conoscenza e la consapevolezza delle specificità di un intervento con gli APVR sono la miglior arma a disposizione di un vigile del fuoco. Come preso in esame sopra, le competenze da conoscere e da sperimentare in tempo di pace non sono molte.

L’improvvisazione non deve essere una scelta ma solo la conseguenza dell’accadimento di un evento imponderabile.

 

[i] Attacco all’asma di Fiamma Ferraro, editore Macro Edizioni

[ii] www.buteyko.it

[iii] http://www.fireengineering.com/articles/print/volume-161/issue-4/features/rethinking-emergency-air-management-the-reilly-emergency-breathing-technique.html